
3DCapture: 3D Reconstruction for a Smartphone

Oleg Muratov Yury Slynko Vitaly Chernov Maria Lyubimtseva Artem Shamsuarov

Victor Bucha

Samsung R&D Institute RUS

{o.muratov, y.slynko, v.chernov, l.maria, v.bucha}@samsung.com

Abstract

We propose a method of reconstruction of 3D represen-

tation (a mesh with a texture) of an object on a smartphone

with a monocular camera. The reconstruction consists of

two parts – real-time scanning around the object and post-

processing. At the scanning stage IMU sensors data are

acquired along with tracks of features in video. A special

care is taken to comply with 360◦ scan requirement. All

these data are used to build a camera trajectory using bun-

dle adjustment techniques after scanning is completed. This

trajectory is used in calculation of depth maps, which then

are used to construct a polygonal mesh with overlaid tex-

tures. The proposed method ensures tracking at 30 fps on a

modern smartphone while the post-processing part is com-

pleted within 1 minute using an OpenCL compatible mobile

GPU. In addition, we show that with a few modifications

this algorithm can be adopted for human face reconstruc-

tion.

1. Introduction

Many recent works [19, 14] have shown that 3D recon-

struction on a smartphone became a reality. However, most

solutions are still quite computationally heavy and do not

produce a high quality model. These methods generate

dense point cloud or 3D color volume, which usually con-

sidered as insufficient for consumer product. Another disad-

vantage of most solutions is a tricky initialization procedure

[13].

In this paper, we propose a method of reconstruction of a

3D model of an object as a mesh with a texture. High frame

rate is crucial for stable tracking (due to small pose changes

between sequential frames at high frame rate) thus we are

using a lightweight 2D feature points tracker coupled with

IMU sensors integration. This approach also allows us to

exclude an initialization step. Then points tracks and IMU

data are used in a novel structure from motion algorithm to

calculate a trajectory of a camera. During 360◦ scanning,

points are visible for a short period of time and strong oc-

clusion occurs making pose estimation difficult. But we can

rely on the fact that the end of the trajectory lies close to its

start thus a loop closure techniques is used to improve struc-

ture from motion accuracy.

Given a camera poses and keyframes it is straightforward

to create depth maps and fuse them into a voxel volume.

This volume is converted into a mesh and complemented

with textures. Thanks to GPGPU computations for depth

processing stages our implementation generates a high res-

olution mesh within 1 minute on a smartphone.

Our key contributions can be summarized as:

• A novel structure-from-motion algorithm based on ro-

bust real-time feature tracking, IMU data integration

and appropriate offline bundle adjustment.

• An optimized pipeline for reconstructing a 3D repre-

sentation of an object as a mesh with a texture com-

pletely on a mobile phone.

1.1. Related Work

The current work deals with monocular 3D reconstruc-

tion, which has been addressed by a great number of works.

However, most of these approaches are inapplicable for

mobile device use due to limited computational resources.

Thereby, below we will focus solely on works that address

mobile device application of 3D reconstruction algorithms.

One of the first works on 3D reconstruction from mo-

bile phone is [19]. It is based on the well known PTAM

algorithm [6] complemented with inertial data integration.

Keyframes with poses produced by SLAM system are used

for depth map computation in real time, which are fused

into a dense 3D color point cloud. A more advanced ap-

proach has been described in [14]. It utilizes direct model-

based image alignment for camera pose estimation. At the

same time the reconstructed volumetric model is continu-

ously updated with new depth measurements. Another ap-

proach has been presented in [15]. It performs simultaneous

visual-inertial shape-based tracking and 3D shape estima-

tion.

1 75



All above mentioned methods use online1 tracking and

mapping, which is a computationally heavy task. This lead

to two significant drawbacks of such approaches. Firstly,

due to limited CPU/GPU/memory resources they com-

promise reconstruction quality to achieve real-time per-

formance. Secondly, such systems require accurate and

smooth scanning that is hard to achieve for an untrained

user.

As opposed to these methods, a structure from motion

(SfM) approach can be used for the same task with no need

for real-time performance. For instance, OpenMVG[12]

framework is used in [18]. However, in order to recover

camera trajectory such approaches usually use local feature

matching that results in a quite long offline processing. In

many cases, as in [1, 21], these tasks are done using cloud-

based processing.

Our approach is close to classic SfM approaches. How-

ever, we propose an efficient motion estimation algorithm

that combines optical flow and inertial data that allows

faster runtime and higher accuracy as compared to pure

SfM approaches, such as [18]. Moreover, to the best of our

knowledge this is the first work that presents a complete 3D

reconstruction pipeline (from capture to textured mesh) for

mobile devices.

1.2. Structure of the Paper

This paper is organized as follows: we present an

overview of the proposed 3D scanning and reconstruction

method in Sec. 2. The motion estimation method and the 3D

reconstruction pipeline are described in Sec. 3 and Sec. 4

respectively. Finally, we evaluate the proposed solution in

Sec. 5.

2. System Overview

A block-wise diagram of our approach is shown in Fig. 1.

We start from capturing a video during which a user is asked

to make a loop around an object of interest. During this

scanning IMU measurements are collected and visual fea-

ture tracking is performed.

After capturing is completed, keyframes with tracked

features and IMU data are used to estimate camera trajec-

tory and scene structure. Next, the keyframes with poses

and sparse scene structure are passed to the depth map es-

timation module, where a depth map is computed for each

keyframe. These depth maps are fused robustly into a single

voxel volume. After that a 3D mesh is extracted from this

volume. Finally, given the keyframes with poses and the 3D

mesh, a texture is generated.

The result of the proposed method is the 3D textured

mesh model of an object of interest. The proposed method

1Here and below, online and offline terms correspond to a time period

during and after capturing respectfully.

Figure 1. System Overview

tracks online at 30 fps on a modern smartphone while the

offline part takes less then a minute using an OpenCL com-

patible mobile GPU.

In the following sections each step of algorithm is de-

scribed in details.

76



3. Motion estimation

A motion estimation module calculates a trajectory of

a camera. As typical for such problems it also calculates

some scene geometry information (a sparse point cloud).

This module is divided into online and offline parts. In-

ertial rotation estimation and feature tracking parts gather

information online in two parallel threads while structure

estimation and loop closure is done offline.

Unlike traditional SLAM systems there is no tight cou-

pling of tracking and mapping parts: feature tracking is not

dependent on the results of structure estimation, the latter

do not need to meet real-time requirements and can be per-

formed after scene capturing has been finished. This leads

to three key properties of the proposed method:

1. There is no initialization step in contrast to a typical

SLAM system.

2. Online part is quite lightweight and performance does

not degrade with time.

3. Lack of feedback loop between tracking and mapping

parts makes tracking very stable since outliers do not

affect online parts of an algorithm.

The inertial rotation estimation thread performs gy-

roscope measurements integration to provide rough rotation

estimation. The gyroscope sensor is sampled at the highest

available rate, it is 100 Hz in our case. For the sake of ef-

ficiency rotation data are represented in a quaternion form.

New measurements are applied to the current rotation esti-

mate using a first order quaternion integration [20]. Here

we do not compensate for the possible drift due to bias.

In our computation we use only relative rotation between

keyframes that are very close in time that makes effect of

this drift negligible.

The feature tracking thread selects keyframes for fur-

ther processing and establishes visual correspondences be-

tween them. In order to get correspondences we select a set

of features in keyframes. As the features we use grayscale

8× 8 square patches taken at FAST corners [16]. We align

them in frames with 2D Lucas-Kanade tracker [2] using

position of patch at previous frame as initial guess. For

the sake of efficiency alignment is performed in inverse-

compositional manner on a pyramidal image in a coarse-

to-fine fashion.

For better robustness against outliers a bidirectional

alignment is performed: a patch from a keyframe is aligned

in the current frame, and then this aligned patch from the

current frame is aligned back to the keyframe. If such bidi-

rectional alignment does not return to the same position in

the keyframe from where it is started, then alignment is

treated as failed.

It is computationally expensive to track all detected fea-

tures, thereby only a subset of detected features is selected

for tracking. A grid-based filtering is applied: an image

is divided into cells, and the feature with the highest Shi-

Tomasi response [17] is taken from each cell. Such a fil-

tering ensures feature points are evenly distributed over an

image. This minimizes a possible gauge freedom effect.

In a scenario of a circular loop motion a viewpoint

changes rapidly such that features are observed for a short

time, and their 2D projections appearance changes a lot. To

tackle with feature disappearance new keyframes are ini-

tialized based on camera rotation obtained from gyroscope

data. Empirically we found that generating a new keyframe

every 3◦ results in best motion estimation accuracy. From

each keyframe a new set of features is extracted.

In addition, features are updated each time a new

keyframe is generated. If given feature is aligned in the new

keyframe, its aligned position and patch from this keyframe

is used for alignment in next frames. This ensures that ma-

jority of features are observed for over 10 keyframes result-

ing in dense connectivity between frames while preserving

negligible features drift.

The structure estimation part receives features tracks

and keyframes with associated rotation and estimates cam-

era trajectories along with a 3D structure of the scene. All

features which were observed in less than three keyframes

are filtered out.

The main idea of the structure estimation algorithm is

to use rough rotation transform between frames calculated

from gyroscope measurement and reduce the pose estima-

tion problem (which is a 6 DOF problem) to finding a corre-

sponding translation (which is a 3 DOF problem). The core

of the algorithm is a multiple view matrix of a point [11]:

Mp=̇




x̂
j
2R2x

j
1 x̂

j
2T2

x̂
j
3R3x

j
1 x̂

j
3T3

...
...

x̂
j
mRmx

j
1 x̂

j
mTm



∈ R

3(m−1)×2, (1)

where x
j
i is normalized homogeneous coordinates of a point

pj in a frame Ci, x̂ is a cross product operator, Ri and Ti are

rotation and translation of the frame Ci respectfully. From

the rank condition of Mp it follows:

x̂
j
iRix

j
1 + αj

x̂
j
iTi = 0, (2)

where term αj is the inverse depth of a point pj with re-

spect to the first frame. These equations are stacked for

each point to form a system of equations. Given initial es-

timate for rotation and depth this problem takes a normal

form of Ax = b, which can be solved efficiently using

Least-Squares with respect to Ti. And vice versa, inverse

depth is estimated using multiple-view constraint equation:

77



αj = −

∑m

i=2(x̂
j
iTi)

T
x̂
j
iRix

j
1

∑m

i=2‖x̂
j
i‖

2
, (3)

with m denoting the number of frames where a point pj has

measurements.

For the first pair of frames there is no prior information

on translation and depth data. In order to initialize struc-

ture we first set inverse depth values for all points to 1, thus

making an assumption of a plane in the front of the camera.

Then an iterative procedure is applied. At each iteration we

estimate translation Ti and inverse depths αj for all points

except a reference one. This process stops when reprojec-

tion error becomes below a threshold. The inverse depth

value of the reference point is fixed to 1 for the entire struc-

ture estimation process, thus defining a scale of the whole

scene. There can be different strategies to select this refer-

ence point; in our implementation we pick a point with a

projection nearest to the center of the frame.

For consecutive frames there is no need to perform “cold

start”, translation can be computed based on points which

already have inverse depth estimate. Then, a depth is up-

dated using equation (3). Note that this update includes not

only points without depth value, but all the points visible in

the current frame.

Next, we refine our estimates by sequentially perform-

ing motion-only and structure-only bundle adjustment op-

timizations, which minimize reprojection residuals using

Gauss-Newton algorithm. This is necessary in order to

compensate for a possible rotation drift due to gyroscope

sensor bias. On average it requires only 1-2 iterations till

the system converges.

After all visual correspondences have been processed the

loop closure step is performed. This step takes advantage

of our prior knowledge that the trajectory contains a loop

point due to a circular-like shape. From the first keyframe

we extract BRISK [10] features computed at FAST corners

and seek for loop closure points among other keyframes.

For efficiency reasons this comparison is done only for

keyframes that are within 15◦ of angular distance to the

first keyframe and have no common points with it. Once

a good set of correspondences is found it is augmented into

the existing scene structure and the pose transform from the

first to the loop closure keyframe is computed. In order to

incorporate this information a global bundle adjustment is

performed using g2o framework [8].

4. 3D Reconstruction Pipeline

4.1. Depth Map Estimation

The keyframes with poses are passed as an input to a

depth map estimation algorithm. The result of this module

is a set of the depth maps (with corresponding poses).

a b

c d e

f g h
Figure 2. Coarse-to-fine depth estimation: depth map with ambi-

guity filtering on level 0 (a), the same after left-right consistency

filtering (b); upscale from level 0 to 1 (c), depth map with ambi-

guity filtering on level 1 (d), the same after left-right consistency

filtering on level 1 (e); upscale from level 1 to 2 (f), depth map

with ambiguity filtering on level 2 (g), the same after left-right

consistency filtering on level 2 (h).

This algorithm is based on a planesweep approach de-

scribed in [3]. Computational simplicity of this method en-

sures fast calculation even on a mobile device. At the same

time, raw depth measurements without an excessive regu-

larization help to preserve fine details in a 3D model. This

happens because our variational depth fusion method (see

Section 4.2) suppresses the impulse-like noise of the simple

planesweep approach. However, it can not deal with large

patches of wrong depth information that usually come from

methods with strong regularization. For this reason we omit

a regularization step in contrast to [3].

Depth estimation is done in a coarse-to-fine pyramidal

scheme with three levels of the pyramid. On the coarsest

pyramid level only a small number of pixels must be pro-

cessed. This allows us to use more accurate settings for

depth estimation on this level without sacrificing runtime.

For instance, we use 5 × 5 versus 3 × 3 search window

and perform image rectification. For the upper levels of the

image pyramid, rectification is omitted for efficiency rea-

sons. In addition, for better accuracy and faster convergence

search range is calculated using the sparse point cloud cre-

ated during motion estimation.

Depth filtering is applied to each pyramid level. Fusion

methods can usually handle well missing data by interpola-

tion or propagation from existing values, but are more sensi-

tive to heavy outliers. Thus, we leave only the depth values

which are accurate with high confidence.

We propose two stages of depth filtering.

78



• Photometric ambiguity. The depth outliers can be ef-

ficiently filtered out by analyzing ratios of the costs to

its minimal value for each pixel (see Fig. 2(a)). When

a texture is absent or ambiguous (periodic along the

epipolar line) many costs will have ratios around 1.

This allows to filter these ambiguities. An example

of the resulting depth maps with the photometric am-

biguity filtering applied is shown in Fig. 2(a)(d)(g).

• Left-right consistency. The left-right check is done by

analyzing the consistency of both depth maps for the

left and right images in the stereo pair. The consistency

is determined by checking re-projection errors for each

pixel using depth values from both depth maps. An

examples of the depth maps after the left-right consis-

tency check are shown in Fig. 2(b)(e)(h).

The depth filtering stage significantly reduces a number

of pixels to be processed on the next pyramid level. It is

especially important because the finest pyramid levels pro-

cessing is much slower than coarser ones. The proposed

depth estimation algorithm allows a very efficient parallel

implementation on a graphical processor (GPU). Memory

consumption can also be reduced because there is no need

to store a full cost-volume in a global memory. An image

can be processed in small regions, and for each of them the

matching cost values can be stored in a local memory.

4.2. Depth Fusion

The depth fusion module fuses (combines) all depth

maps into a volumetric representation of the object taking

into account their poses. We follow approach described in

[22, 3] for variational fusion of depth maps using truncated

signed distance function (TSDF), which is implemented in

a coarse-to-fine manner.

The reconstruction takes place in the volume of inter-

est (VOI), which is automatically placed around the cap-

tured object based on the sparse point cloud available af-

ter tracking stage. On the finer pyramid level the result of

optimization procedure is used as an initial guess. This al-

lows us to speedup runtime by reducing the number of it-

erations required for convergence at the optimization stage

and improve quality by quickly propagating measurements

to unseen space on coarser levels and thus reducing artifacts

which typically appear outside of a captured area.

In addition, we improve spatial resolution of the final

model by re-adjusting VOI after analyzing results of the

coarse level. Often an object of interest is placed on a table

or another planar support structure (e.g. box). First, we ex-

amine if there is a horizontal plane at the bottom of the cap-

tured scene. This is done by detecting a plane in the dense

point cloud using SVD and checking that all camera rays

are casted from above on that plane. This allows alignment

of VOI with the plane and avoid wasting space for volume

Figure 3. Vertex color interpolation. Here two faces are shown: a-

b-c (textured) and b-c-d (not textured yet). First, color to vertices b

and c is assigned. Color value for vertex d is obtained by averaging

colors of vertices b and a. Texture for face b-c-d is obtained by

interpolating color values of vertices b, c and d.

below it. After processing coarse pyramid level rough volu-

metric representation of the scene is used to refine informa-

tion about space that is empty or occluded by the support

structure. This is done by examining whether TSDF values

are close to 1, which represents a volume between a camera

and the surface. VOI boundaries are automatically placed

more tightly around the object, excluding processing of the

useless area.

Similar to [3] we use first-order primal-dual algorithm

for minimization of the energy function on each level of

pyramid. The result is a TSDF volume of the captured ob-

ject. Our implementation uses 3 levels of pyramid with

1283 volume on the finest level. Measurement integration

and energy minimization is done on GPU with OpenCL ker-

nels.

4.3. Mesh Construction and Simplification

With the computed TSDF representation a 3D polygonal

mesh can be reconstructed in the two following steps.

Octree-based TSDF representation. Since the compu-

tational complexity of texture mapping procedure is linearly

dependent on a number of the 3D mesh polygons, we use

octrees representation of the TSDF volume. For the most

models, a maximum octree depth value equal to 7 limits the

complexity of the 3D model by 20-30 thousand polygons.

Isosurface extraction. The 3D mesh is reconstructed

using an unconstrained isosurface extraction on arbitrary

octrees approach as it is described in [5].

79



Figure 4. Sample reconstruction results.

a b c
Figure 5. Method limitations: transparent and specular object (a), plane (2D) details (b), objects with no texture (c).

4.4. Texture Mapping

The reconstructed mesh and keyframes with poses are

used as an input of the texture mapping algorithm which

builds a textured mesh. First it processed visible faces, then

creates texture for invisible ones.

Seamless texturing. Each visible face is textured by

means of projection to one of camera images. To achieve

best result special care is paid to avoid seams between tex-

ture patches from different keyframes. This is done in two

stages following an algorithms described in [9].

First, for each visible face a camera which will be used

for texturing is selected by means of solving Markov ran-

dom field (MRF) energy minimization problem. Objec-

tive function consists of two terms that forcing each face to

choose individually “best” camera at the same time forming

seamless texture between adjacent faces. Second, textures

are adjusted by adding special leveling function to them to

minimize color discontinuities on seams, left after the first

step.

Hole filling. There can be some faces that are invisible

from any camera. Hence there are some not textured ar-

eas (holes) in the mesh at this stage. To fill these holes we

propagate color information from textured faces to adjacent

untextured faces through simple vertex color interpolation.

First, all invisible vertices are added into a processing

set. Then a color of each vertex from the set is computed by

averaging colors of all visible adjacent vertices. Color for a

visible vertex is picked from the same camera image as for

texturing faces which contain this vertex. If there are sev-

eral faces containing this vertex that are labeled differently,

either of them is chosen. All colored vertices are marked

as visible and deleted from the processing set. The process

stops when the set is empty. The vertex color interpolation

algorithm is shown in Fig. 3.

4.5. Face Reconstruction

In case of capturing human face we apply additional

steps for better reconstruction quality. First of all, we use

face detection on the first captured frame in order to decide

if we need to take additional care during reconstruction. For

face detection we utilize 3D facial motion capture algorithm

[4]. This algorithm provides information such as 3D po-

sition of the head, face contours, precise eyes and mouth

location, gaze direction and blinking information.

During structure estimation we use eyes location infor-

mation and sparse scene structure in order to get metric esti-

mate of scene scale. This allows us to use of metric thresh-

80



olds in further processing providing better reconstruction

results. In the depth map estimation algorithm the face area

is used in order to eliminate depth outliers. Eyes location

is also used in order to properly place and align VOI during

depth fusion. For better texture mapping we use eyes and

mouth textures from the same camera view (to ensure con-

sistent eyes’ view direction), which is chosen to be the most

frontal camera view at the same time avoiding views where

blinking has been detected.

5. Experimental Results

For the evaluation we run the proposed algorithm on

Samsung Galaxy Tab S2 tablet with Samsung Exynos 5433

SoC featuring four core CPU and ARM Mali-T760 GPU. In

our implementation we retrieve HD images from the cam-

era. For motion and depth processing we downsample im-

ages to VGA resolution. For texture mapping image res-

olution is critical for the quality and HD images are used

as sources for textures. Timing per module is provided in

Tab. 1.

In addition, we performed qualitative comparison of

the proposed solution to the prior art. For this evalua-

tion we used Church dataset provided by [19]. On Fig. 6

we show reconstruction quality comparison with algorithms

described in [19, 7], [14] and [18]. It is evident that the

proposed algorithm generates less noisy 3D model. It is

worth mention that our and [18] solutions reconstruct a

mesh while other considered methods produce a point cloud

or SDF. Time of mesh generation (after capturing is fin-

ished) is within 1 minute for our approach and about 20-30

minutes for [18].

Some sample reconstruction results on more challenging

datasets are shown in Fig. 4. The objects were captured in-

door, under normal illumination conditions. The scanning

path was a closed loop (360◦) around an object. It is ap-

parent the the proposed method can cope with quite small

details in high level of occlusions.

Some limitations of our method are presented in Fig. 5.

These limitation are quite common for monocular recon-

struction: specular, transparent or glossy objects, objects

with no texture and narrow planes (2D objects).

360◦ scanning is a difficult case for tracking systems and

usually requires an accurate and smooth camera motion. In

contrast, the proposed method allows even an untrained user

to track successfully.

6. Conclusions and Future Work

We presented the world-first method of reconstruction

of an object as a high-quality textured polygonal 3D mesh

done completely on a mobile device with a monocular cam-

era. Using of high-precision tracking system optimized for

360◦ scanning, IMU sensors integration thread, dedicated

a

b

c

d

Figure 6. Reconstruction results on Church dataset [19]: Kolev et.

al. [7] (a), MobileFusion [14] (b), SCANN3D [18] (c) and our

(d). Left and right images rendered using diffused and direct light

respectfully. Vertex representation of MobileFusion results was

obtained by applying isosurface function from Matlab to raw SDF

volume.

81



Table 1. Timing by modules for Samsung Galaxy Tab S2. On av-

erage during scanning 120 keyframes are generated.

Module Performance

scanning 30fps / 100Hz

structure estimation / loop closure 25s

depth maps 12s

mesh generation (inc. depth fusion) 8s

texture mapping 10s

camera pose estimation method based on bundle adjust-

ment techniques, robust depth map fusion algorithm and

accurate texture mapping method ensures a high quality 3D

model. Overall processing time is within 1 minute due to

parallelization of all critical algorithm parts using OpenCL

framework and execution on mobile device GPU. The per-

formance of the proposed solution was demonstrated on

general object and human face cases.

References

[1] Autodesk, Inc. 123D Catch. www.123dapp.com/

catch. 2

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on:

A unifying framework. International journal of com-

puter vision, 56(3):221–255, 2004. 3

[3] G. Graber. Realtime 3D reconstruction. Master’s the-

sis, Graz, Austria, March 2011. 4, 5

[4] Y. Hwang, J.-B. Kim, X. Feng, W.-C. Bang, T. Rhee,

J. D. Kim, and C. Kim. Markerless 3D facial mo-

tion capture system. In IS&T/SPIE Electronic Imag-

ing, pages 828–909. International Society for Optics

and Photonics, 2012. 6

[5] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Un-

constrained isosurface extraction on arbitrary octrees.

In Symposium on Geometry Processing, volume 7,

2007. 5

[6] G. Klein and D. Murray. Parallel tracking and map-

ping for small AR workspaces. In Mixed and Aug-

mented Reality (ISMAR), 2007. 1

[7] K. Kolev, P. Tanskanen, P. Speciale, and M. Polle-

feys. Turning mobile phones into 3D scanners. In

2014 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 3946–3953. IEEE,

2014. 7

[8] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige,

and W. Burgard. g2o: A general framework for graph

optimization. In Robotics and Automation (ICRA),

2013 IEEE International Conference on. IEEE, 2011.

4

[9] V. Lempitsky and D. Ivanov. Seamless mosaicing of

image-based texture maps. In Computer Vision and

Pattern Recognition, 2007. CVPR’07. IEEE Confer-

ence on, pages 1–6. IEEE, 2007. 6

[10] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK:

Binary robust invariant scalable keypoints. In Com-

puter Vision (ICCV), 2011 IEEE International Con-

ference on, pages 2548–2555. IEEE, 2011. 4

[11] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An

Invitation to 3-D Vision: From Images to Geometric

Models. Springer Verlag, 2003. 3

[12] P. Moulon, P. Monasse, R. Marlet, et al. OpenMVG.

An open multiple view geometry library. https://

github.com/openMVG/openMVG. 2

[13] A. Mulloni, M. Ramachandran, G. Reitmayr, D. Wag-

ner, R. Grasset, and S. Diaz. User friendly SLAM ini-

tialization. In 2013 IEEE International Symposium on

Mixed and Augmented Reality (ISMAR), pages 153–

162. IEEE, 2013. 1

[14] P. Ondrúška, P. Kohli, and S. Izadi. Mobile-

Fusion: Real-time volumetric surface reconstruc-

tion and dense tracking on mobile phones. DOI

10.1109/TVCG.2015.2459902, IEEE Transactions on

Visualization and Computer Graphics, 2015. 1, 7

[15] V. A. Prisacariu, O. Kahler, D. W. Murray, and I. D.

Reid. Simultaneous 3D tracking and reconstruction

on a mobile phone. In 2013 IEEE International Sym-

posium on Mixed and Augmented Reality (ISMAR),

pages 89–98. IEEE, 2013. 1

[16] E. Rosten and T. Drummond. Fusing points and lines

for high performance tracking. In Computer Vision,

2005. ICCV 2005. Tenth IEEE International Confer-

ence on, volume 2, pages 1508–1515. IEEE, 2005. 3

[17] J. Shi and C. Tomasi. Good features to track.

In Computer Vision and Pattern Recognition, 2007.

CVPR’94. IEEE Conference on. IEEE, 1994. 3

[18] SmartMobileVision Scann3D (candidate/3.2.1-4223).

http://www.smartmobilevision.com. 2, 7

[19] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco,

O. Saurer, and M. Pollefeys. Live metric 3D re-

construction on mobile phones. In Computer Vi-

sion (ICCV), 2013 IEEE International Conference on,

pages 65–72. IEEE, 2013. 1, 7

[20] N. Trawny and S. I. Roumeliotis. Indirect Kalman

filter for 3D attitude estimation. University of Min-

nesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2,

2005. 3

[21] TRNIO. TRNIO, 2015. http://www.trnio.com. 2

[22] C. Zach. Fast and high quality fusion of depth maps.

In Proceedings of the international symposium on

3D data processing, visualization and transmission

(3DPVT), volume 1. Citeseer, 2008. 5

82

www.123dapp.com/catch
www.123dapp.com/catch
https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG
http://www.smartmobilevision.com

