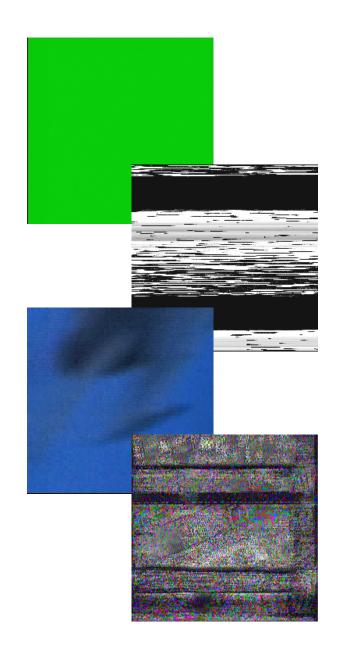


Слынько Ю.В.


ОАО «МАК «Вымпел»

Московский Физико - Технический Институт (Государственный университет)

Постановка задачи

В работе рассмотрена задача анализа видеопоследовательности с целью определения особых ситуаций, при которых дальнейшая обработка видео сильно затруднена или вовсе невозможна. Основные детектируемые ситуации:

- 1. Смена сцены
- 2. Отсутствие полезной информации на входе (чисто шумовой кадр)
- 3. Сильная зашумленность разного характера
- 4. Слабоинформативные плохо связанные по времени кадры (например, при прохождении перед камерой объекта на расстоянии сильно меньшем дистанции фокусировки).

Блок – схема алгоритма

Вычисление метрик

Эффективная площадь минимума функции невязки

Значение функции невязки в минимуме χ^2 - критерий разности гистограмм

Классификатор на основе нейронной сети

Метрики

Для вычисления метрик использовалась функция невязки (как функция от сдвига кадров)

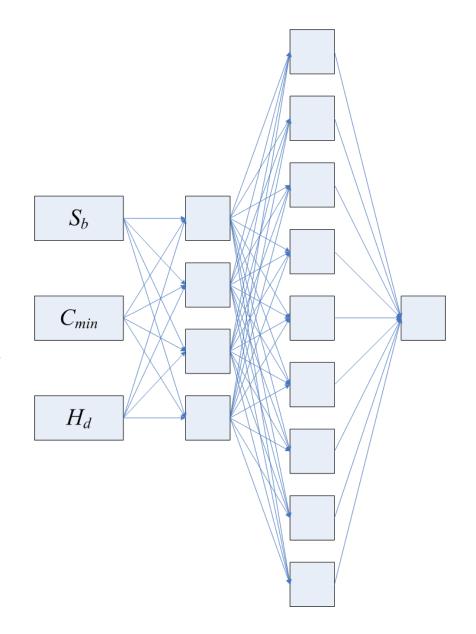
$$X_{(F^1,F^2)}(dx,dy) = \frac{1}{S(M)} \sum_{(i,j) \in M (dx,dy)} (F^1_{ij} - F^2_{i+dx,j+dy})^2$$

В качестве метрик для алгоритма классификации были использованы следующие:

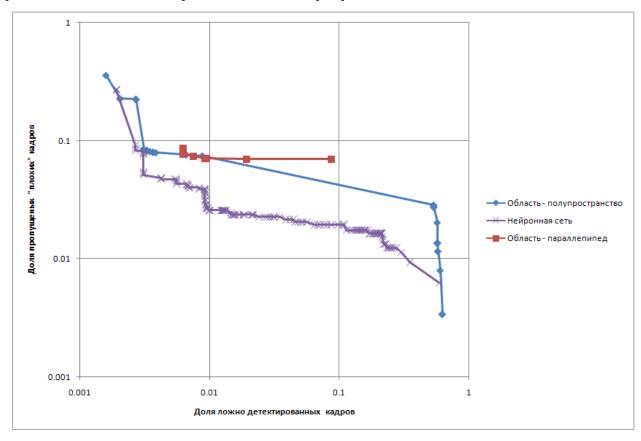
1. S_b - эффективная площадь минимума функции невязки как площадь области

области
$$\widetilde{D} = \left\{ dx_i, dy_i : X_{(F^1, F^2)}(dx_i, dy_i) < m_i + B \cdot \sigma_i \right\}$$

где параметры находятся из оценки шума в пикселе


- 2. C_{min} значение функции невязки в минимуме
- 3. H_d χ^2 критерий разности гистограмм

Нейронная сеть


В качестве классификатора была использована трехслойная нейронная сеть.

Предварительное обучения было проведено на более чем 10⁶ кадрах из различных последовательностей.

Обучение проводилось алгоритмом обратного распространения

Результаты – кривые эффективности

Кривая эффективности представленного алгоритма. Для сравнения приведены кривые эффективности с использованием нейронной сети, а также классификации на основе выделения простой области (полупространство и параллепипед) в пространстве признаков.

Результаты – сводная таблица

Скорость работы (кадров в сек.) Pentium M	
	160
1700МГц, 640 x 480	
Вероятность пропуска / вероятность ложного	
детектирования для задачи детектирования смены	0.2%/<0.01%
сцены	
Вероятность пропуска / вероятность ложного	
детектирования для задачи детектирования	<0.01%/<0.01%
шумовых кадров при отсутствии полезного сигнала	
Вероятность пропуска / вероятность ложного	
детектирования для задачи детектирования	<0.01% / 0.01%
шумовых кадров в присутствии полезного сигнала	